
433 

Some perturbation solutions in laminar boundary 
layer theory 

Part 2. The energy equation 

By HERBERT FOX AND PAUL A. LIBBY 
Polytechnic Institute of Brooklyn 

(Received 29 November 1963) 

Solutions for two types of problems involving the energy equation for flows with 
velocities described by the Blasius solution are presented. The first type arises 
in flows with arbitrary initial distributions of stagnation enthalpy and with sur- 
faces downstream of the initial station either with constant wall enthalpy or with 
zero heat transfer. Exact solutions in these cases are obtained for constant pp, 
and Prandtl number of unity; they are given in terms of complete orthogonal 
sets of functions which can be used to obtain first- and higher-order corrections 
for the effects of variable pp, non-unity Prandtl number, and deviations of the 
velocity field from that described by the Blasius solution. 

The second type of problem pertains to flows with power-law descriptions of 
the wall enthalpy. Again the basic solutions are obtained for Prandtl number of 
unity and the effect of non-unity Prandtl number is treated as a perturbation. 

1. Introduction 
As a continuation of the study of flows with velocities described by perturba- 

tions of the Blasius solution (Libby & Fox 1963) there is presented herein arelated 
study of the energy equation. Because of the relation among species conserva- 
tion with no gas-phase chemical reaction, element conservation and energy 
conservation expressed in terms of the stagnation enthalpy, the analysis can also 
be applied directly to problems related to heterogeneous flows. Although this 
applicability will not be repeatedly emphasized, it will be readily appreciated. 

If the product of the mass density and viscosity coefficient (pp) and the Prandtl 
number are constant, the energy equation is a linear partial differential equation 
which for a known, but general, velocity field is difficult to solve. However, if 
the velocities are given by the Blasius solution, exact solutions can be obtained 
for a variety of initial and boundary conditions with the Prandtl number as the 
sole parameter. 

If the Prandtl number is close to unity as in most gas flows so that the effects 
of non-unity Prandtl number can be considered as perturbations, these exact 
solutions, which may be considered basic, and the related perturbation solutions 
can be obtained once and for all and can be applied readily to obtain approximate 
solutions for arbitrary Prandtl number. In  the same manner the influences of 
deviations of the velocity field from that described by the Blasius solution due 
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either to mass transfer or to variations in the product pp can be considered as 
perturbations to the basic solutions. 

There are first presented solutions of two problems which form the basis of the 
perturbation analysis and which correspond to C c 1, c = 1, and f = f,,(q); 
these pertain to initial profile problems wherein the distribution of stagnation 
enthalpy a t  a given streamwise station is arbitmrily specified. In  one the enthalpy 
distribution on the wall downstream of the initial station is constant and in the 
second the heat transfer to the wall is zero. The solutions to these problems are 
shown to be given in terms of complete orthogonal sets of functions. The perturba- 
tions due to deviations of C, c and f are next shown to be determined in terms of a 
Green’s function and thus may be obtained by quadrature. The results of this 
analysis are applied to the problem of the heat transfer to a surface with a 
step-function distribution of wall enthalpy, of the adiabatic wall enthalpy 
downstream of a cooled or heated surface, and of the adiabatic wall enthalpy 
downstream of a porous-cooled surface. 

There is presented next a reconsideration of the problem which has been 
treated by Chapman & Rubesin (1949) and which involves the heat transfer to 
a surface with a power-law distribution of the wall enthalpy. In  this problem the 
Prandtl number is a parameter; here the deviation thereof from unity is treated 
as a perturbation so that the results may be readily applied to any constant, 
non-unity Prandtl number. Although these arbitrary values must presumably 
be in the neighbourhood of unity, the results are compared to more accurate 
calculations made with Prandtl number as a parameter and are shown to be 
in good agreement for 0.5 < CT < 3.0. 

As an extension of the Chapman-Rubesin problem there is considered a flow 
with a specified initial distributioii of stagnation enthalpy and a wall enthalpy 
expressed as a power series in the streamwise variable. For this problem it may 
be convenient to express the wall enthalpy in terms of negative powers; the 
requisite functions are therefore presented here. 

The report concludes with a discussion of several applications of the various 
solutions presented herein. Reference will be made throughout the discussion 
to pertinent related work.? 

2. Initial-profile problems 
The energy equation for a laminar boundary layer with a uniform external 

stream and a constant Prandtl number g can be written in terms of the Levy- 
Lees variables 7 and 3 and of the stagnation enthalpy ratio g [cf. Lees 1956 and 
Hayes & Probstein 19591 as$ 

(3.1) 

t Tabulations of various functions, which were generated in this study and which may 
be of value in application, are available in a complete version of this paper identified as 
PIBAL Report No. 704, October 1963. 

t Note that it is assumed either that the composition is uniform throughout the 
boundary layer or that the Lewis number associated with the diffusion coefficient of each 
species is unity. 
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The corresponding momentum equation is 

(Cf,,), i-ff,, - 2"f,f,, -f&J = 0. 

The analysis is started by letting 

f('Y 7) = f O ( 7 )  +f1(', 7)9 g('7 '7) = go(', 7) + gl('7 7) 
and by writing (2.1) in a formal way, i.e. without approximation, as 

135 

(2.2) 

go?t,+fogo,-2s"f;go,- = {-gl??-fo91??+2s"f;Sls 
+ - C )  goJg - [flgol, - 2g(flqgo;: - f1 , ,~0 , )1+ (1 - 4 [fago? 
+2,?E(f; f;)'-2q;go;]}+{ }, (2.3) 

where there will be in the second { } on the right-hand side products of terms 

The basis for the analysis resides in the solution to several problems each 
corresponding to C = 1, CT 5 1, and f = f a ,  i.e. f ,  = 0; in this case g, can be taken 
to be identically zero and the right-hand side of (2.3) is zero. The boundary and 
initial conditions of interest in the first problem to be considered are 

such as [(I - C) glJp f l g l ~ ,  etc. 

g0(s"i7 7) = G O ( v ) >  O) = gW 0 = const.> g(s",co) = (2.4) 

This problem represents a boundary layer, which has velocities described by 
the Blasius solution, which flows on a surface of constant enthalpy, and which 
has, at s" = Ei =+ 0, an arbitrary distribution of stagnation enthalpy. 

To find a solution let 

g(s"77) = gw,O+(~-g,,o)f;+90,1(~~,7)~ 
and take g0,1('7 7) = 'Tl(7)' 
Substitution into (2.3) with a zero right-hand side yields 

and 
8, N s"-& 

N ; + f , N ; + A , f ; N ,  = 0, 

(2.5) 
(2.6) 

where A, is the separation parameter. The boundary conditions are 

N,(O) = N,(m) = 0. 

Clearly (2.8) defines eigenvalues A, and eigenfunctions Nl. For the selection 
of A, it  is necessary to examine the asymptotic behaviour of N,; for large 7, 

(2.9) 
(2.8) becomes 

which is identical with the equation for Hl discussed in the Appendix to Part 1 
(Libby & Fox 1963). In  particular for A, > 0 all solutions yield Nl(co) = 0 ;  
however, if exponential behaviour is required, discrete values of A, > 0 can be 
selected by numerical procedures as discussed below. 

Consider some of the properties of these eigenfunctions; the usual procedures 
for establishing orthogonality can be readily applied to show that 

N;+(y-K)N;+AINl N 0, 

(2.10) 
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provided that N,,,, decays exponentially for large 7 at least as fast as 
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exp [ - $(7 - K ) ~ ] .  

Thus provided such asymptotic behaviour prevails the Nl,m functions are ortho- 
gonal with respect to the weighting function ( fLl f6 ' ) .  Also multiplication of (2.8) 
by (NJf;) dy and integration over the infinite range of 7 leads readily to 

r m  r m  

(3.11) 

provided the aforementioned behaviour with 7 + co prevails; from (2.11) 
and the characteristics off; and f l ,  it  is clear A, > 0. Similarly, consideration of 
(2.8) and of the equation for the complex conjugate of AT, involving the complex 
conjugate of the eigenvalue A, shows that A, is only real. Finally, (2.8) can be 
put in Sturm-Liouville form so that the properties which result in (2.10) imply 
that the Nl functions form a complete orthogoizal set with respect to functions 
with exponential decay as 7 --f co. 

Accordingly, numerical procedures can be employed to find the positive real 
values of A,, yielding exponential behaviour as 7 --f co. There is employed the 
approximate solution of (2.9) valid if 11 - All (7 - K ) - ~  < 1, and if the power-law 
behaviour as 7 --f co is suppressed; i.e. 

N ;  2: - Nl(7 - K )  [ 1 + ( 1 - A,) (7 - I<)-']. (2.12) 

Thus, if a t  a value of 7 sufficiently large, a value of N, is assumed to prevail, 
then (2.13) provides N ;  and the integration can be started in the direction of '1 
decreasing. At 7 = 0 the value of N, will in general be different from zero but its 
value provides a criterion for the selection of A,. After the eigenvalues have 
been selected, a final integration from 7 = 0 with A7;(0) = 1 and with equal 
increments in 7 is carried out to 7 = 6 in order to obtain convenient tabulations 
of the eigenfunctions, and of a related function and to obtain the normalizing 
constant Cl, n. 

The first ten eigenfunctions obtained according to this procedure are shown in 
figure 1. Presented below are the related eigenvalues and the normalizing 
constants 

Ql,?? (fh/f{) NLd7.  

> n 1 Y 3 4 5 6 7 8 9 10 

A,, 1.572 3.385 5.35 7.14 9.05 10.96 12.88 14.81 16-74 18.68 

C , ,  7.346 5.154 4.392 3.835 3.414 3.254 3.OG7 2.894 2.749 2.581 

The eigenfunctions provide the solution for go,,($, 7) as 
W 

gO,,(S", 7) = Z A,,n(B/$,)""~.N,,,(r), (3.13) 

coefficients are selected so that the initial conditions are satisfied; 
n = l  

where the 
because of (2.4), (2.5) and (2.10), 
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It is noted that the solution given by (2.13) and (2.14) is exact in principle for 
general G,,(y) but will be approximate in application if only a finite number of 
eigenfunctions are employed; of course, if the bracketed quantity in (2.14) 
is proportional to one of the available eigenfunctions or is represented by a 
finite sum of available eigenfunctions, then the solution is again exact. 

FIGURE 1. Eigenfunctions and eigenvalues for constant wall enthalpy : (a )  A ,  - Al,5; 
( b )  Al. 6 - A 1.10' 

A second problem, basic to the analysis, is given by (2.3) with its right-hand 

go(gii, 7) = Go(717 g0,(57 0 )  = 0,  go(g, a) = 1- (2.15) 

This problem corresponds to a boundary layer which has velocities described by 
the Blasius solution, which flows on an adiabatic surface, and which has an arbi- 
trary distribution of enthalpy a t  5 = gx + 0.t The solution may be found in 
much the same manner as that for go,l; let 

side identically zero and with initial and boundary conditions given by 

d g ,  7) = 1 +go, z(57 7 1 1 7  (2.16) 
and gn,2 = flz(5) %(T). (2.17) 

Then 8, E t A a ,  (2.18) 

and Ni+foNL+h,fhNz == 0, (2.19) 

t The solution of this problem can be applied directly to the determination of the con- 
centration field either in terms of element mass fractions in reacting flows or in terms of 
the species mass fractions for non-reacting flows provided that all Lewis numbers are 
unity. 
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subject to the boundary conditions Nh(0) = N,(oo) = 0. Again the A,'s are sepa- 
ration constants which are eigenvalues of (2.19) and which may be selected so 
that exponential behaviour is obtained as 7 -+ co. 

The discussion pertaining to the characteristics of the N1(7) functions given 
previously apply as well to these N,(y) functions; i.e. A, > 0 and real, 

P r n  

and the N2,n functions form a complete orthogona.1 set. 
The solution for go, ,(s", 7) is given by 

m 

n = l  
9 0 , 2 ( 4  7) = c A,,n(s"/s"~)-~"~.N,,,(r), 

where from (2.15), (2.16) and (2.20) 

A2,n = /om(f;/f:) ( ~ 0 - 1 ) % , n d 7 / ~ , n , .  

(2.20) 

(2.21) 

(2.22) 

For A, = 1 the eigenfunction can be obtained in closed form by integration of 
(2.19);f there is obtained subject to the scaling condition N,(O) = 1, 

(2.23) 

Nine additional eigenvalues and eigenfunctions have been obtained by numerical 
integration with the same procedure as that employed for the selection of A,; 
they are shown in figure 2. The values of the eigenvalues and of the constants G2,n 
appearing in (2.20) are as given below: 

n 1  2 3 4 5  6 7 8 9 10 
A , *  1 2.77 4.62 6.51 8.41 10.32 12.24 14.17 16.10 18.04 
C2.n 2.267 3.215 3.830 4.237 4.609 4.934 5.199 5.403 5,600 5.709 

At this point in the presentation it is perhaps of interest to consider direct 
applications of these two sets of eigenvalues since they can be employed to provide 
exact solutions to certain problems. 

The first set of eigenfunctions can be used directly to solve the problem of 
the heat transfer to a surface with a step-function distribution in wall enthalpy. 
Consider G = 1, u 3 1, f = fa and let 

(2.24) 

where gw,l, g,,o are constant. This problem is a classical one in boundary-layer 
theory; Tribus & Klein (1952) provide a convenient review of many problems 
connected with non-isothermal surfaces. Previous analyses of the energy equa- 
tion in constant-pressure flows approximate the velocity field by f M r2 and there- 

t This case has been employed to validate the numerical procedures for the selection of 
the eigenvalues. 
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fore apply strictly only in the limit as g+co (cf. Lighthill 1950). The solution 
given by (2.13) and (2.14) is in principle exact for C = 1, = 1, and may be ob- 
tained by letting Go = gW,l+P-9w,l)f; (2.25) 

in (2.1 4), so that the coefficients ,!Il,% can be evaluated once and for all in the form 

Note that this integral can be evaluated in closed form as 

Then the solution for g for s" 3 Zi is readily obtained from (2.5) and (2.13). 
4, n. = [4,12 Cl, flf;(o)l-l. (2.263) 

Nz, n NZ, n 

(a) ( b )  

( b )  & , L l - - A Z . l O .  

FIGURE 2. Eigenfunctions and eigenvalues for adiabatic wall : (a )  Az, - Az, ; 

When the first ten eigenfunctions available here are applied, the solution 
is of course again approximate; it  is of interest to consider the profile develop- 
ment as shown in figure 3 for the special case of gw,l = 1, i.e. an adiabatic surface 
folIowed by a cooled or heated wall. It is of interest to note in figure 3 that the 
representation of the initial profile, which in this case is constant, results in the 
classical 'overshoot'. Of interest in this problem is the heat transfer to the wall 
downstream of the discontinuity. For this special case of gw,l = 1 and of two- 
dimensional flow? this can be shown to be 

t Similar expressions involving as a parameter (gw. - gw, J/( 1 - gw, o )  can be readily 
derived for the general case. 
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Eckert (1950) obtains the following approximate result 

a, N 0*332[1- (E/9i)-g]~4, (2.28) 

which is functionally quite different. However, if the first ten eigenfunctions 
are used, the comparison shown in figure 4 is obtained. 

Similarly an exact solution to a related problem can be obtained from the 

FIGURE 3. 

1.c 

0.8 

0-6 

8, 
0.4 

0.2 

0 

( g - - g w , o ) / ( l  - s w , o )  

Enthalpy profiles for step-function wall enthalpy. 

FIGURE 4. Distribution of heat transfer for step-function wall enthalpy. 
, Asymptotic values. 
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N2,n functions. Consider then a flow with C = 1, (T E 1, ,f = f o ,  and with wall 
boundary conditions given by 

1 As", 0 )  = 

g,(d,O) = 0 

(0  ,< s" 6 Ei), 

(B > di ) .  
(2.29) 

Such a flow involves a constant-temperature initial surface followed by an 
adiabatic downstream surface. This problem has also been treated in the past 
by approximate methods and by an adaptation of the analysis of Lighthill 
corresponding to CT + co (cf. Durgin 1959 for infer a.lia a, review of the pertinent 
literatuie). 

F/Ji 

FIGURE 5 .  Distribution of adiabatic wall enthalpy downstream of a 
constant wall cnthalpy section. 

According to the present analysis Go in (2 .22 )  is given by (2.25) so that the co- 
efficients A ,  n are given by 

Again, (2.30a) can be evaluated exactly as 

A ,  n = [ A ,  n c2, nl-l. (2.30 b)  

Of interest in this problem is the distribution of g,u, on the adiabatic surface, 
i.e. for B > Ei; it  is given from (2.16), (2.21), and (2.30) as 

(2.31) 

The results obtained from the first ten eigenvalues, i.e. from those available, 
are presented in figure 5. Comparison is made to the results presented by Baron 
(1956) and Libby & Morduchow (1954). 

Consider next as an application of the above analysis the problem treated 
according to the strip method by Pallone (1961) and by finite differences by 
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Howe (1959). This involves a porous surface with injection varying as 3-i for 
S < S,, followed by an adiabatic impermeable surface for S > Si. It is desired to 
compute the distribution of adiabatic surface enthalpy on the downstream 
region. It has been assumed by Pallone and Howe that C = 1 and that the 
Prandtl number is 0.72. An approximate solution to this problem can be obtained 
according to the analysis and point of view of the present report by considering 
the solutions to be given by 

g(s", 9 )  = SO(S"' 9) t- (1  - d 91, I($, 9) + 91,2(5,9)' (2.33) 

where go satisfies the initial and boundary conditions andis given by (2.16)' (2.21) 
and (2.22) with G,(T) obtained from Low (1955). This zero-order solution go does 
not account either for the perturbation due to non-unity Prandtl number or 
for the perturbation to the velocity field due to the mass transfer. The first-order 
corrections therefore are given respectively by gl,l and g1,2 which from (2.3) may 
be seen to be determined by 

(91,o,,+fo(91,i).l- 2%(gl,i); = a s 7  9 )  ( i  = 1,319 (3.33) 
where Hl = fagot, + 2Wfhfon)' - 2%90,* (3.34a) 
and H2 = - f190q  + 2s"(fiq9O-, -f1;:90,). (2.343) 

The boundary andinitial conditions on each correction function are homogeneous, 

(2.35) i.e. 

The solutions for the two functions gl,i (i = 1,2)  are formally identical and 
may be obtained in terms of a Green's function constructed as follows: define 

'('' 92 by G,, +foGr - 2S'hG; = S(S- So) b(7 - T,), (3.36) 

91,i(%' 9) = (91,i& (97 0 )  = 9 , , i ( S " ' ~ )  = 0. 

and 
m 

(2.37) 

(2.38) 

The coefficients D2,,  involve 
of the N2*, functions, are given as 

as a parameter and because of the orthogonality 

D2,n = N2,n(~o)/f~(~o) G , n -  (2.39) 

Substitution of (2.37) and (2.38) into (2.36) and consideration of (2.19) defining 
the N2, function results in 

A2, G, + 2SGA = - D2, S(S - So), (2.40) 

where here ( )' I d/dS. It is convenient to let Gn = 0 for Si < S < So so that for 
S > 8, the solution of (2.40) is 

Gn = - (D2,,/3SO) (S/So)-a%., (2.41) 

and the requisite Green's function is available. The solutions for gl,i are thus 
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which must be evaluated numerically. In  many applications properties a t  
the surface y = 0 are of interest so that S becomes the only parameter in the inte- 
gration. 

The results of this analysis have been compared to the calculations of Pallone 
(1961) for the case off, = - 0.5 in the upstream portion of length x = L in a flow 
with a free-stream Mach number of 3.0. The variable S/gi can be written as xlL 
and the results of primary interest can be presented as in figure 6, i.e. in terms of 

X I L  

FIGURE 6. Distribution of adiabatic wall enthalpy downstream of a porously cooled sec- 
tion. - , Present results, zero order; - - - , Pallone; 0, five terms; A, ten terms- 
present results withf, and u .t. 1 included. ___ , fw = 0.5; M ,  = 3.0. 

g, versus x/L.  Shown there is the distribution of go(B, 0) and for x/L = 1.8, 3.0 
and 4.0 the values of g,, obtained from (2.32) with IT = 0-72 and with fl(s",y) 
computed from the analysis in Part 1. There is demonstrated the use of five 
and ten eigenfunctionsin therepresentationof the Green's functions. The numeri- 
cal integration of (2.42) was carried out on a Bendix G-15 computer using a 
trapezoidal rule in both variables, go, yo. The good agreement with the more 
accurate calculations of Pallone will be noted. The improvement, at  x / L  = 1.8, 
with the ten eigenfunctions is noted; similar results can be expected for the other 
values of xlL. 

The same approach can be used for other problems involving initial distribu- 
tions of g; for example, if the effect on the adiabatic surface temperature of vari- 
able C is desired, it  is possible to estimate C as a function of fo and go and to 
add a correction function gl,,(s", 7) on the right-hand side of (2.32). The forcing 
function H3(9, y) is in this case obtained from (2.3) as 

H3 = [(I - C) 90J7. (2.43) 

The solution given by (2.42) again applies. Similarly for problems involving 
initial enthalpy profiles and a specified wall enthalpy, gw,o, the first-order 
corrections due to variations of C, to IT $: 1, and to fl, may be determined from a 
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solution of the form (3.43) but with the Green's function expressed in terms 
of the Nl, n ( y )  functions rather than of the AT2, %(y) functions employed above. 

In  passing it is perhaps worth making several remarks; the second and higher 
approximations for gl(S, '1) can be obtained by application of (2.24) wherein the 
Hi forcing function is obtained from the appropriate additional terms on the 
right-hand side of (2.3) and is expressed in terms of previously obtained solutions 
for g,. In  problems involving C f 1 the most accurate available representation 
of C can of course be incorporated in the Hi function. In obtaining these higher 
approximations the complete correction functions and certain derivatives 
thereof must be evaluated at  a sufficient number of points (s", y) so that the inte- 
gration for the next-order corrections in the form (2.43) can be carried out. Pro- 
blems of heterogeneous boundary layers involving no gas-phase reaction but sur- 
face reaction of first order with a finite catalicity <require sets of eigenfunctions 
satisfying the condition N:,,(O) - <Ni,n(0) = 0,  5 = const., but can be treated 
by the same techniques as employed here. Finally, problems of boundary layers 
with finite rate chemistry would appear to be tractable by iteration techniques 
based on (2.43); in this case the Hi function involves the creation terms and must 
be determined from a previous iterate. 

3. Power-law distributions of wall enthalpyt 

boundary layer described by the Blasius solution with C = 1, 
the conditions 

where 0 < s" < gL.  This corresponds to the problem treated by Chapman & 
Rubesin (1949) but with r~ = 1. Following their analysis, represent gw(s") as 

From the point of view demonstrated above consider the energy field in a 
= 1, subject to 

(3.1) go(0,y) = 1 7  go(s", 0 )  = g w ( a  go(&m) = 1 7  

m 

g,(s") = 1 + I; Dw,71(s"/s"# (n = 0,3,4,6,  ...), (3.2) 
n=O 

where Du,,n are known coefficients of a power series representation of gw(s"). Let 

t It will be recognized from the above discussion that the solution to the step-function 
distribution of gw given by (2.24)-(2.26) can be employed as a unit solution for the treat- 
ment of arbitrary distributions of g, with C = 1, CT = 1. The results 

where 

where Al, with gu,. = 1, gu,, = 0, and where the integral is taken in the Stieltjes 
sense. By application of the perturbation point of view this unit problem can be general- 
ized for fl s 0, C s 1, u s 1. With it finite number of Nl. functions available this solu- 
tion becomes approximate, whereas with the power law distributions discussed here the 
solutions for C E 1, CT 

= Al, 

1 are exact. 
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Then 
hand 

the equation 
side as 

for N3, is obtained 

N i ,  n +foN;, 

by substitution into (2.3) with zero 

n - nfh N3, n = 0, 

right- 

(3.4) 

which may conveniently be subjected to the conditions N&(0) = 1, A\,,(co) = 0. 
The asymptotic behaviour of N3,n(y) is given by (2.12) with A, replaced by - 92;  

in this case the slope N;,,(O) must be selected so that a2 = 0. Since (3.4) is linear, 
two integrations thereof with arbitrary but different values of Nj,,(O) can be 

11 
3 

3 a 

1 

‘0 01 0.2 0.3 0.4 0 5  0.6 0 
u 
‘ 0.8 0.9 1-0 

l”3.n 

- N;. , (0):  0.4696, 0.76714, 0.93309, 1.0553, 1.1543, 1.2393. 
FIGURE 7 .  Characteristic fimctions for variable wall enthalpy. 1 2 :  0, 2, 4, 6, 8, 10; 

carried out to sufficiently large y so that the asymptotic solution is valid and then 
can be linearly combined so that a2 = 0 for the combinatio1i.t 

Because of the boundary conditions on N3,n(?l) it  is clear from a comparison of 
(3.2) and (3.3) that DtL,,n = A3,n so that (3.3) is the requisite solution. For n = 0,  
the solution of (3.4) satisfying the appropriate boundary conditions is 

(3.5) N3,0 = 1 - f;. 
The solutions corresponding to n = 2 , 4 ,  6 ,  8, 10 have been obtained numerically; 
they are shown in figure 7. 

Consider now the influence of non-unity Prandtl number treated as a perturba- 
tion to the solution for go given by (3.3); it is convenient to let 

g(s“,y) 2: 1 +  A 3 , n ( S / ~ ~ ) ~ n [ N 3 , n + ( l - ~ ) N g , , ] + ~ ? ~ ( l - ~ ) N g ,  (3.6) 
n=0 .2  ... 

t An alternate procedure may be employed by initiating the calculation at  sufficientsly 
large 7 so that the asymptotic solution is valid and then with ctz c 0 integrating to the wall. 
The solution then need only be scaled to obta.in the desired behaviour of N 3 ,  TL(0) .  
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so that from (3.3) the two effects of a =t= 1, i.e. that due to altered heat transfer 
and that due to viscous heating, are obtained separately. The equations for N4, 72 

and N5 are 
(3.7) 
(3.8) 

Ni, n + f 0 Ni, n - nf a, n = f0 N A ,  n - nf ; N3, n 9 

N i  +fox; = ( j ;  f:)’. 
The boundary conditions on N4,n and N5 are homogeneous. 

N4, n 

FIGURE 8. Characteristic functions for non-unity Prandtl number. n: 2, 4, 6, 8, 10; 
N;,,(O): 0.260, 0.314, 0.354, 0.386, 0.413. 

The solutions for N4,0 and N5 may be obtained in terms of the Blasius solution 
by quadrature; they are 

N4,o = c1 f ;  + f  ; / 2  + f ;  In f; ,  (3.9) 
N5 = (fh/4) ( j ;  - 1)  +fo f:/% 

where c1 = - lim [In f ;+( f ; /2) ]  = 1.117. 

The solutions for N4,n (n = 2,4 ,  6, 8,lO) have been obtained numerically and are 
given in figure 8. 

The functions N3,n + (1 - a) N4,n should be considered approximations to the 
functions obtained with a digital computer by Chapman & Rubesin for a specific 
value of cr, namely IT = 0.72 and with an analog computer by Tifford & Chu 
(1953) for IT = 0-5,1,2. A comparison of the present approximate results for the 

(3.10) 

9-00 
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wall gradients, Nj, n( 0 )  + ( 1 - v) Xi,  n( 0 ) ,  with the more accurate calculations is 
shown in figure 9. It will be noted that quite an accurate prediction of the effect 
of non-unity Prandtl number on these gradients is obtained by the present results. 

U 

FIGURE 9. Effect of non-unity Prandtl numbers on wall gradients of unit solutions. 
-~ , Present results [ N ; , , + ( l - c )  N i , J v > ;  0, Chapman & Rubesin; 0, Tifford & 
Chu . 

It is perhaps of interest to note that the solution of the form (3 .6)  reduces in 
the special case of constant surface enthalpy g, = gu,,o to an approximate solu- 
tion for C e 1 ,  a + 1 ;  in this case A3,n = 0 ( n  > 0) ,  and = gu,,o- 1 .  The solu- 
tion then becomes 

g(S,q) = g(7) = 1 + (gw,o- 1 )  [ ( I  - f h )  + (1 - v)N4,0] + 2'Z(l  -v) N5. (3.11) 

Of course, in this case an exact solution for g can be obtained by repeated 
quadrature (see for example, Schlichting 1955); however, (3 .1  1 )  may be more 
convenient for rapid estimates of heat transfer. It is also noted that (3.1 1 )  yields 
an approximate recovery factor r defined in terms of the adiabatic wall enthalpy 

(3.12) 
haw according to 

If terms quadratic in ( 1  - a)  are neglected, (3.11) results in 

ha&, = 1 + ? - ( u p h e ) .  

r2i  +(1+a),  (3.13) 

which is in agreement with the frequently employed approximation r N a3 
obtained by correlation of more accurate numerical calculations. 
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A further comparison can be made for the numerical example discussed by 
Chapman & Rubesin; although their surface temperature is expressed as a 
distribution of (T, - Taw)/Taw the corresponding distribution of g, in terms of the 
parameters of the present report is found to be 

g,,(X) = [ l+(fEi/2)((~-1)][1+0*35-0*83f+0*33Z~],  (3.14) 

where the approximation (3.13) has been employed in (3.12), where 

' , W I T ,  = haudhej 

and where x = s"/EL. Clearly in this example, n = 0,3,4 only. It is Convenient to 
introduce the adiabatic value of g, i.e. the value of g corresponding to ha,lh, 
as given by (3.13) and (3.13); it is 

sou, = 1 +*?%(a- l), (3.15) 

so that comparison of (3.14) and (3.3) implies 

(3.16) 

The comparison is made in terms of a Nusselt-Reynolds number denoted here 
as N z  and defined as N 2  = (g6c,,,x)/(lC,h,,,N~~). (3.17) 

This parameter is identical to the parameter of Chapman & Rubesin in the case 
of constant cp .  The comparison is shown in figure 10 for (T = 0.73; also show is 
the heat transfer for (T = 1. The good agreement for the former value of the 
Prandtl number will be n0ted.l 

As a final example of the treatment of the energy equation by the perturbation 
point of view, consider the following problem: Let C = 1, (T = 1, and seek a 
solution of the energy equation subject to the conditions 

d&q) = Go(?l), g(s",o) = 1, g(s", 0) = g,W. (3.18) 

This will be recognized as a combination of the initial-value problem of $ 2  
and the specified wall-enthalpy problem of this section. In  this case, however, 
it  is permissible, and indeed may be more convenient, to consider negative integer 
values in the power-series representation of g,(B)$. In  order to emphasize this 
difference, the open range of s", s" 2 Bi > 0 will be considered and it will be assumed 
that 

where gfL,,m is a constant and where the D,,,, coefficients are known. 
It will be convenient to seek a solution in the form 

m 

m + A5,n(s"/s")-~~nN;,,(9), (3.20) 
n=2 

t If the second form for Dr,o above is employed, then the quantity gau, factors from 
i s  neglected; the expression for g,, provided a second-order term proportional to (r- 1) 

in this case the Mach number does not have to be specified. 
1 The authors are indebted to Mr Paul Taub for pointing this out. 
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FIGURE 10. Variation of heat transfer rate. - - - , Present report, CT = 1.0; 
-, present report, CT = 0.72; -.-, Chapman & Rubesin, c = 0.72. 

FIGURE 11. Characteristic functions for variable wall enthalpy. 
n: 2, 4, 6, 8, 10; -N;,%(O): 0.95, 0.889, 0.816, 0.734, 0.642. 
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where N l , n ( ~ )  are the eigenfunctions presented here, and N G , n ( ~ )  are given by 
(3.4) with n < 0 and N3,n -+ NG,n. If NG,n(0) = 1, then comparison of (3.19) and 
(3.20) yields Dw,n = The initial conditions are satisfied by selecting A4,?& so 
that 

The functions N6,n(~ )  for n = 2, 4, 6, 8, 10 have been found numerically; they 
are shown in figure 11. Clearly the techniques, previously described for taking 
into account the effects of variable C and of CT =+ 1, can be applied to this problem. 

4. Concluding remarks 
There has been presented a treatment of problems involving arbitrary initial 

energy profiles and power-law distributions of wall enthalpy. Exact solutions 
to several problems involving constant pp, unity Prandtl number and velo- 
city fields given by the Blasius solutions have been obtained in terms of complete 
orthogonal sets of functions which appear to provide convenient approximate 
solutions to other problems in boundary-layer theory. In  particular the effects 
of variability of the product ( p p ) ,  of non-unity but constant Prandtl number, 
and of deviations of the velocity field from that given by the Blasius solution 
have been treated as perturbations. Because of the character of the sets of 
functions higher-order effects can be computed systematically by quadrature. 
The close analogy between the equations for energy conservation, for species 
conservation with no gas-phase reaction and for element conservation indicates 
the applicability of this analysis to a variety of problems related to heterogeneous 
and reacting flows. 
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